Saturday, 24 November 2018

Aptitude


1)Remember first 25 Prime numbers

2,3,5,7,97
1
 -1,3,7,9
2
5
8
  -3,9
3
6
 1,7
4
  -  1,3,7
7
  - 1,3,9




Formulas Details



1.         a2 – b2 = (a – b)(a + b)
2.         (a+b)2 = a2 + 2ab + b2
3.         a2 + b2 = (a – b)2 + 2ab
4.         (a – b)2 = a2 – 2ab + b2
5.         (a + b + c)2 = a2 + b2 + c2 + 2ab + 2ac + 2bc
6.         (a – b – c)2 = a2 + b2 + c2 – 2ab – 2ac + 2bc
7.         (a + b)3 = a3 + 3a2b + 3ab2 + b3 ; (a + b)3 = a3 + b3 + 3ab(a + b)
8.         (a – b)3 = a3 – 3a2b + 3ab2 – b3
9.         a3 – b3 = (a – b)(a2 + ab + b2)
10.    a3 + b3 = (a + b)(a2 – ab + b2)
11.    (a + b)3 = a3 + 3a2b + 3ab2 + b3
12.    (a – b)3 = a3 – 3a2b + 3ab2 – b3
13.    (a + b)4 = a4 + 4a3b + 6a2b2 + 4ab3 + b4)
14.    (a – b)4 = a4 – 4a3b + 6a2b2 – 4ab3 + b4)
15.    a4 – b4 = (a – b)(a + b)(a2 + b2)
16.    a5 – b5 = (a – b)(a4 + a3b + a2b2 + ab3 + b4)
17.    If n is a natural number, an – bn = (a – b)(an-1 + an-2b+…+ bn-2a + bn-1)
18.    If n is even (n = 2k), an + bn = (a + b)(an-1 – an-2b +…+ bn-2a – bn-1)
19.    If n is odd (n = 2k + 1), an + bn = (a + b)(an-1 – an-2b +…- bn-2a + bn-1)
20.    (1+2+3+…+n)=n(n+1)/2=AVG/(n+1)/2
21.    (12+22+32+…n2)=n(n+1)(2n+1)/6
22.    (13+23+33+….n3)=[n(n+1)/2]2 =n2(n+1)2/4
23.    Arithmetic Progressions
    a, a+d,a+2d,a+3d,….. first term=a, common difference=d
    Let the nth term tn and let last term=tn=l then
a)        nth term=a+(n-1)d
b)        sum of n terms =n/2[2a+(n-1)d]

24.    Geomantic Progressions   a,ar,ar2,ar3,…in GP first term=a, common difference=r  
              n th term=a+(n-1)d
            sum of n terms
a)        a(1-rn)/1-r       where r<1
b)        a(rn -1)/r-1    where r>1
25.          L.C.M X   H.C.F = a X b
26.         H.C.F=(H.C.F of Numerators)/(L.C.M of Denominators)
27.          L.C.M=(L.C.M of Denominators)/ (H.C.F of Numerators)
28.    Time and Work Formula
     M=Men,T=Time,W=work
    MxT/(RS/W)
29.    BODMAS RULE
Brackets of,Divison,Multiplication,Addition,subtraction
30.    Average=(sum of Observation)/(no of Observation)
31.    AverageSpeed=2xy/(x+y) kmph
32.    Price of commodity increases by r% then the reduction is consumption so as not to increase the expenditure
             [r/(100+r)X 100]%
33.    Price  of commodity  decrease by r% then the increase in consumption so as to decreases the expenditure

            [r/(100-r)X 100]%

34.    Population increase or decrease by R% rate per annum
a)        Population after n years=p(1+(r/100))n    increases r%
b)        Population after n years=p(1-(r/100))n    decrease r%
c)        Population n years ago= p/(1+(r/100))n    increases r%
d)        Population n years ago= p/(1-(r/100))n    decrease r%
35.    C.P=Cost Price   S.P=selling Price  Profit(or) gain=S.P-C.P  loss=C.P-S.P
a)        X%= X x 100/C.P  where   X=profit /loss
b)        S.P/C.P=  (100+X%)/100    where       X% Profit
c)        S.P/C.P=  (100-X%)/100      Where     X% loss
36.    If an article is sold at again of say 35% then S.P=135% of C.P
37.    If an article is sold at loss of say 35% then S.P=65% of C.P
38.    When a person sells 2 similar items, one at  a gain of say x% and other at a loss of x%,then  the seller always incurs a loss given by
                       Loss%=(common loss and gain%/10)2 =(x/10)2
39.    If a trader professes to sell his goods at cost price, but uses false  weights then
            Gain%=[error/(trueValue-error)X 100)]%
40.     a/b = a:b   (ancedent:consequent)
a:b=c:d   =>   (bXc)=(aXd)     
a/b=c/d     =>  [ a+b/(a-b)=c+d/(c-d)]

41.    Time and Work
       tA=Time taken to A to complete a work       tB=Time taken to B to complete a work
       tAB=Time taken to AB to complete a work
                   tAB=[  (tA x tB)/( tA+ tB)]            (OR)     tAB=[(1/ tA)+(1/tB)]
42.    s=Speed,  d=distance  ,t=time
                         S=d/t
43.     x km/hr=[X  x (5/18)] m/sec          x m/sec=[X  x (18/5)] km/hr
44.    where  a=distance of faster train, b is distance  of slower train u is the velocity of faster train and v is the velocity of slower train
              Faster train to cross  slower  train=(a+b)/(u-v)  sec
45.    If 2 trains coming in opposite direction when they will meet each other
                AS:BS = Sqrt of b :Sqrt of a      where a,b is distance and AS,BS is velocity of trains
46.    If the speed of a boat is still water is u km/hr and the speed of the stream is v km/hr then
a)        Speed of Downstream SD=(u+v)    km/hr   (same direction of boat and stream)
b)        Speed of Upstream SD=(u-v)    km/hr   (opposite direction of boat and stream)
47.    If the speed downstream is a km/hr & speed upstream  is b km/hr then
a)        Speed in still water=(a+b)/2 km/hr
b)        Rate of stream =(a-b)/2 km/hr

48.    Rule of allegation: if 2 ingredients are mixed then
       (Quality of cheaper)/(Quality of dearer)=
       [(C.P of dearer- mean Price) /(mean price -C.P of cheaper)]
49.    Suppose a container contains x units of liquid from which y units are taken out and replaced by water. After n operations,the quality of pure liquid
                [x(1-(y/x))n] units
50.    P=principal (or) sum  R =rate T=time   S.I=simple interest
               S.I=[PTR/100]

51.    For Compound interest
P=principal (or) sum R=rate per annum T= n years A=Amount
a)        Annually compound interest                                      A=[p(1+(r/100))n]
b)        When interest compounded Half early                     A=[p(1+((r/2)/100))2n]
c)        When interest compounded Quartly early                A=[p(1+((r/4)/100))4n]
d)        Annually compound interest, but time is in fraction like 3 X2/5 years
                                                                A=[p(1+(r/100))3 X ((1+((2/5)/100)))]
52.    When rates are different for different years,say r1%,r2%,r3% for 1 st,2 nd and 3 rd year respectively then amount
                       A=p(1+(r1/100))X(1+(r2/100))X(1+(r3/100))
Your got X rupees of n years         Present Worth=[X/(1+(r/100))n]









No comments:

Post a Comment